

Summary of Muon Working Group

The Muon Trio

20 KG

more

B. Lee Roberts
Department of Physics
Boston University

roberts@bu.edu

http://physics.bu.edu/roberts.html

The Muon Trio

Lepton Flavor Violation

$$\mu^{-}A \rightarrow e^{-}A$$

$$\mu^{+} \rightarrow e^{+}\gamma$$

$$\mu^{+} \rightarrow e^{+}e^{-}e^{+}$$

Muon EDM

$$ar{u}_{\mu} \left[rac{ie}{2m_{\mu}} f_2(q^2) - f_3(q^2) \gamma_5
ight] \sigma_{\beta\delta} q^{
u} u_{\mu}$$
 $f_2(0) = a_{\mu} \quad f_3(0) = d_{\mu}; \; \mathsf{EDM}$

• Muon (g-2)

chirality changing

$$ar{u}_{\mu}[ef_{1}(q^{2})\gamma_{\beta} + f_{1}(0) = 1 \quad f_{2}(0) = u_{\mu}$$

General Statements

- We know that v oscillate
 - neutral lepton flavor violation
- Expect Charged lepton flavor violation at some level
 - enhanced if there is new dynamics at the TeV scale
 - in particular if there is SUSY
- We expect CP in the lepton sector (EDMs as well as v oscillations)
 - possible connection with cosmology (leptogenesis)

- Scenario 1
 - LHC finds SUSY
- All three will have SUSY enhancements
 - to understand the nature of the SUSY space we need to get all the information possible to understand the nature of this new theory

SUSY connection between a_{μ} , D_{μ} , $\mu \rightarrow e$

a_{μ} sensitivity to SUSY (large tan β)

$$\mu \tilde{\mu} \tilde{\lambda} \tilde{\mu}$$

$$a_{\mu}({
m SUSY}) \simeq rac{lpha(M_Z)}{8\pi \sin^2 heta_W} rac{m_{\mu}^2}{ ilde{m}^2} \left(1 - rac{4lpha}{\pi} \ln rac{ ilde{m}}{m_{\mu}}
ight)$$

$$\simeq (\operatorname{sgn}\mu) \ 13 \times 10^{-10} \left(\frac{100 \ \text{GeV}}{\tilde{m}}\right)^2$$

Today with e⁺e⁻ based theory:

All E821
results were
obtained
with a "blind"
2972/5Ference

with $e^+e^ SM \text{ value } \omega_a$ $a_\mu = \frac{e}{mc}B$

$$a_{\mu} = 11659208(6) \times 10^{-10} (0.5 \text{ ppm})$$

μ EDM may be enhanced above $m_u/m_e \times e EDM$

μ EDM greatly enhanced

when heavy neutrinos non-degenerate

Magnitude increases with magnitude of v Yukawa couplings and tan \(\beta \)

arXiv:hep-ph/0111324 v2 30 Nov 2001

Present EDM Limits

Particle	Present EDM limit	SM value
	(e-cm)	(e-cm)
n	6.3×10^{-26}	$10^{-32} - 10^{-31}$
e^-	$\sim 1.6 \times 10^{-27}$	< 10 ⁻⁴¹
$\boldsymbol{\mu}$	$< 10^{-18}$ (CERN) $\sim 10^{-19}$ * (E821)	< 10 ⁻³⁸
future μ exp	10 ⁻²⁴ to 10 ⁻²⁵	

*projected

SUSY predictions of $\mu^-A \rightarrow e^-A$

Complementary measurements (discrimination between SUSY models)

Connection with ν oscillations

Additional contribution to slepton mixing from V_{21} , matrix element responsible for solar neutrino deficit. (J. Hisano & N. Nomura, Phys. Rev. **D59** (1999) 116005).

The Physics Case

- Scenario 2
 - LHC finds Standard Model Higgs at a reasonable mass, nothing else, (g-2) discrepancy could be the only indication beyond neutrino mass of New Physics
- Then precision measurements come to the forefront, since they are sensitive to heavier virtual physics.
 - μ-e conversion is especially sensitive to other new physics besides SUSY

Sensitivity to Different Muon Conversion Mechanisms

Supersymmetry

Predictions at 10⁻¹⁵

Compositeness

$$\Lambda_{\rm C}$$
 = 3000 TeV

Heavy Neutrinos

$$\left| U_{\mu N}^* U_{e N} \right|^2 = 8 \times 10^{-13}$$

Second Higgs doublet

$$g_{H_{\mu e}} = 10^{-4} \times g_{H_{\mu \mu}}$$

Leptoquarks

$$M_L = 3000 \sqrt{\lambda_{\mu d} \lambda_{ed}} \text{ TeV/c}^2$$

Heavy Z', Anomalous Z coupling

$$M_{Z'} = 3000 \text{ TeV/c}^2$$

$$B(Z \to \mu e) < 10^{-17}$$

After W. Marciano

Limits on Muon Number Violating Processes

Mass limit

$$B(K_L^0 \to \mu^{\pm} e^{\mp}) < 4.7 \times 10^{-12}$$

150 TeV/c²

$$\Delta G = 0$$

$$B(K^+ \to \pi^+ \mu^+ e^-) < 4 \times 10^{-11}$$

 31 TeV/c^2

$$B(K_1^0 \to \pi^0 \mu^+ e^-) < 3.2 \times 10^{-10} 37 \text{ TeV/c}^2$$

$$\Lambda G = 1$$

$$B(\mu^+ \to e^+ e^-) < 1 \times 10^{-12}$$

86 TeV/c²

$$B(\mu^+ \to e^+ \gamma) < 1.2 \times 10^{-11}$$

21 TeV/c²

$$\frac{\Gamma(\mu^{-}\mathsf{A}\to\mathsf{e}^{-}\mathsf{A})}{\Gamma(\mu^{-}\mathsf{A}\to\nu\mathsf{A}')}<6.1\times10^{-13}$$

365 TeV/c²

μ -N \rightarrow e-N vs. $\mu\rightarrow$ e γ as Probes of LFV

- μ⁻N → e⁻N is more sensitive for essentially all processes not mediated by photon
- μ⁻N → e⁻N is more sensitive than is μ→e γ to chirality conserving processes
- $\mu \rightarrow e \gamma$ is more sensitive for processes mediated by photons
 - − B(μ →e γ) \cong 300 × R_{μ e} for these processes
- The motivation is sufficiently strong that both experiments should be done
 - Relative rates for $\mu \rightarrow e \gamma$ and $\mu^-N \rightarrow e^-N$ would give information on underlying mechanism
 - A significant rate for $\mu \rightarrow e \gamma$ with polarized muons could give additional information on mechanism

a_{μ} is sensitive to a wide range of new physics besides SUSY

muon substructure

$$\delta a_{\mu}(\Lambda_{\mu}) \simeq rac{m_{\mu}^2}{\Lambda_{\mu}^2}$$

u

u

The Experiments: LFV

$$\mu^{-}A \rightarrow e^{-}A$$

$$\mu^{+} \rightarrow e^{+}\gamma$$

$$\mu^{+} \rightarrow e^{+}e^{-}e^{+}$$

$$\mu^{+}e^{-} \rightarrow \mu^{-}e^{+}$$

- µe conversion and Muonium-anti-Muonium conversion
 - pulsed beam
- $\mu \rightarrow e \gamma$ and eee
 - DC beam

- MEG
 - 10⁻¹³ BR sensitivity
- MECO
 - 10-17 BR sensitivity

Future Experiments on LFV

- PRIME-type experiment (with FFAG muon storage ring)
 - few $\times 10^{-19}$
- $\mu \rightarrow e\gamma$ or $\mu \rightarrow eee$ experiment, $\rightarrow ???$

Unique Features of PD

- the v program uses Main Injector
 - a program using the recycler @8 GeV could have 588 bunches, 1500 x 10¹² protons (0.2 tp/bunch); pulse width 3 ns, with the ability to kick one bunch at a time.
- This is perfect for μe conversion, muon EDM, and other μ experiments which need a pulsed beam. (except g-2 which needs 6 GeV/c π)
- This μ program could run simultaneously with the (high E) ν program.

Spin Precession Frequencies: EDM & g-2

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

$$\gamma_{\text{magic}} = 29.3_{+}$$

The motional E - field, β X B, is **much** stronger than laboratory electric fields.

The EDM causes the spin to precess out of plane.

$$\frac{\omega_{a}}{m} \left[\frac{\eta}{2} \left(\frac{\vec{E}}{c} + \vec{\beta} \times \vec{B} \right) \right]$$

Muon EDM

 use radial E field to "turn off" g-2 precession so the spin follows the momentum.

look for an up-down asymmetry which builds up

with time

Beam Needs: NP2

- the figure of merit is N_{μ} times the polarization.
- we need $NP^2 \sim 5 \times 10^{16}$

to reach the 10⁻²⁴ e-cm level.

Since SUSY calculations range from 10⁻²² to 10⁻³² e cm, more muons is better.

g-2 future progress

- E969 @ BNL 0.5 → 0.20 ppm
 - expected near-term improvement in theory,
 - \rightarrow the ability to confront the SM by \sim x2
- The next generation 0.20 → 0.05 ppm
 - substantial R&D would be necessary
 - new ring or improved present ring?

Other fundamental measurements:

- LFV μ + N $\rightarrow \tau$ + X
 - might be competitive with LFV τ decays
- Measurements with Muonium
 - $-m^+e^- \rightarrow m^-e^+$ conversion
 - measurement of M hyperfine structure (μ_{μ}/μ_{p})
 - measurement of fine-structure constant α
 - m_{μ}/m_{e}
- Muon lifetime
 - $-G_F$

Summary and Conclusions

- Important muon experiments can be carried out at the Proton Driver
 - LFV
 - -g-2
 - muon EDM
- There are a few smaller scale experiments which also would benefit from such an improved intensity.

Conclusions – ctd.

 The muon trio are <u>complementary</u> to other ways to explore the frontier beyond the standard model

- Depending on what LHC finds, they may be the only way to get at this information.
- In either case, they will provide essential information in our attempt to discover the correct theory beyond the Standard Model

